影响人脸识别通道管理系统中的人脸采集有哪些因素?

人脸图像的来源可能多种多样,由于采集设备的不同,得到的人脸图像质量也不一样,特别是对于那些低分辨率、噪声大、质量差的人脸图像(如手机摄像头拍摄的人脸图片、远程监控拍摄的图片等)如何进行有效地人脸识别是个需要关注的问题。

创腾智能人脸识别通道

今天小创带大家了解下影响人脸识别通道管理系统中的人脸采集有哪些因素?

1:图像大小

人脸图像过小会影响识别效果,人脸图像过大会影响识别速度。在规定的图像大小内,算法更容易提升准确率和召回率。图像大小反映在实际应用场景就是人脸离摄像头的距离。

2:图像分辨率

越低的图像分辨率越难识别。图像大小综合图像分辨率,直接影响摄像头识别距离。现4K摄像头看清人脸的最远距离是10米,7K摄像头是20米。

3:遮挡程度

五官无遮挡、脸部边缘清晰的图像为最佳。而在实际场景中,很多人脸都会被帽子、眼镜、口罩等遮挡物遮挡,这部分数据需要根据算法要求决定是否留用训练。对于非配合情况下的人脸图像采集,遮挡问题是一个非常严重的问题。带着眼镜,帽子等饰物,使得被采集出来的人脸图像有可能不完整,从而影响了后面的特征提取与识别,甚至会导致人脸检测算法的失效。

4:光照环境

过曝或过暗的光照环境都会影响人脸识别效果。可以从摄像头自带的功能补光或滤光平衡光照影响,也可以利用算法模型优化图像光线。

5:模糊程度

实际场景主要着力解决运动模糊,人脸相对于摄像头的移动经常会产生运动模糊。部分摄像头有抗模糊的功能,而在成本有限的情况下,考虑通过算法模型优化此问题。

6:采集角度

人脸相对于摄像头角度为正脸最佳。但实际场景中往往很难抓拍正脸。因此算法模型需训练包含左右侧人脸、上下侧人脸的数据。工业施工上摄像头安置的角度,需满足人脸与摄像头构成的角度在算法识别范围内的要求。采集角度问题也是目前人脸识别研究中需要解决的一个技术难点。目前多数的人脸识别算法主要针列正面、准正而人脸图像,当发生俯仰或者左右侧而比较厉害的情况下,人脸识别算法的识别率也将会急剧下降。对于有一定偏转角度的人脸,我们会首先对其进行摆正,即将人脸摆正成正脸,然后进行识别。

十有八九,我们之间的初次合作需要一些缘分,一次深入沟通是彼此了解的第一步;

开始沟通
在线咨询 扫码关注
  • 创腾智能二维码

    官方微信公众号